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• 𝑧𝑧 𝑡𝑡 , 𝑣𝑣(𝑡𝑡): Relative position and velocity of target w.r.t missile along Z-axis.
• Initial target range 𝑅𝑅0 = 3000𝑚𝑚
• Missile horizontal velocity 𝑉𝑉𝑐𝑐 = 300𝑚𝑚𝑠𝑠−1

• 𝑧𝑧 𝑡𝑡𝑓𝑓 = 𝑣𝑣 𝑡𝑡𝑓𝑓 = 0 for a successful intercept. 
• Objective: Minimize the overall control effort throughout the trajectory. 

Equations of Motion (EOM): 
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https://www.youtube.com/watch?v=wlkRYMVUZTs
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• Euler Method 
• Trapezoidal Method
• Hermite-Simpson Method

 Medium-order direct collocation
 State represented by cubic Hermite splines
 Control is assumed to be piecewise-linear
 Dynamics satisfied using Simpson quadrature
 Midpoint control and state values required 
 Approximates the dynamics �̇�𝒙 = 𝒇𝒇(𝑡𝑡,𝒙𝒙,𝒖𝒖) as 

where                                                     , 

[ ]1 14
6k k k c k
hx x f f f+ += + + +

( ) ( )1 1
1
2 8c k k k k

hx x x f f+ += + + − ( )1
1
2c k ku u u += +

Treated in Interim Report
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Steepest Descent 

• The simplest method for unconstrained optimization is steepest descent. 
• Key idea: The negative gradient −𝛻𝛻𝛻𝛻(𝑥𝑥) points in the “steepest downhill” direction for 

𝛻𝛻(𝑥𝑥) at 𝑥𝑥.
• Question: How far should we go in the direction of −𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘)?
• Line Search: For a direction 𝑠𝑠 ∈ 𝑅𝑅𝑛𝑛, let 𝜙𝜙:𝑅𝑅 → 𝑅𝑅 be 𝜙𝜙 𝜂𝜂 = 𝛻𝛻(𝑥𝑥 + 𝜂𝜂𝑠𝑠). Then, 

minimizing 𝛻𝛻 along 𝑠𝑠 corresponds to minimizing the one-dimensional function 𝜙𝜙 𝜂𝜂 .
 Golden Section Line Search 
 Backtracking Line Search
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1. Intro/Prob 
Statement

STEEPEST DESCENT 

1 Choose initial guess 0x , convergence tolerance tol  

2 for k = 0, 1, 2,...  do  

3  ( )k k=s f x−∇  

4  if ( )
2k tolf x ≤∇  then converged 

5  Choose kη  that minimizes ( ) ( )k k k kf x sφ η η= +  

6  1k k k kx x sη+ ← +  

7 end for 

 

( ) ( ) ( )Tf x d f x f x d+ ≈ +∇
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Newton’s Method

• Steepest descent often converges very slowly. 
 Linear convergence rate, zigzag pattern 
 Not suitable for badly scaled problem where the eigenvalues of the Hessian 

at the solution are different by several orders of magnitude; large 𝜅𝜅 = �𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

• Key idea: We can get faster convergence by using more information about 𝛻𝛻(𝑥𝑥)

• Motivation: 𝛻𝛻 𝑥𝑥𝑘𝑘 + 𝑠𝑠𝑘𝑘 ≈ 𝛻𝛻 𝑥𝑥𝑘𝑘 + ∇𝛻𝛻 𝑥𝑥𝑘𝑘 𝑇𝑇𝑠𝑠𝑘𝑘 + 1
2
𝑠𝑠𝑘𝑘∇2𝛻𝛻 𝑥𝑥𝑘𝑘 𝑠𝑠𝑘𝑘

• 𝑠𝑠𝑘𝑘 should minimize 𝛻𝛻 𝑥𝑥𝑘𝑘 + 𝑠𝑠𝑘𝑘 = 𝛻𝛻 𝑥𝑥𝑘𝑘 + 𝛻𝛻𝛻𝛻 𝑥𝑥𝑘𝑘 𝑇𝑇𝑠𝑠𝑘𝑘 + 1
2
𝑠𝑠𝑘𝑘𝛻𝛻2𝛻𝛻 𝑥𝑥𝑘𝑘 𝑠𝑠𝑘𝑘

• So, ∇𝑠𝑠𝑘𝑘𝛻𝛻 𝑥𝑥𝑘𝑘 + 𝑠𝑠𝑘𝑘 = 𝛻𝛻𝛻𝛻 𝑥𝑥𝑘𝑘 + 𝐻𝐻𝑘𝑘𝑠𝑠𝑘𝑘 = 0 ⇒ 𝑠𝑠𝑘𝑘 = −𝐻𝐻𝑘𝑘−1𝛻𝛻𝛻𝛻 𝑥𝑥𝑘𝑘 ,   𝐻𝐻𝑘𝑘 = 𝛻𝛻2𝛻𝛻 𝑥𝑥𝑘𝑘
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1. Intro/Prob 
Statement

𝑠𝑠𝑘𝑘 = ∆𝑥𝑥𝑛𝑛𝑛𝑛 (Newton step)

NEWTON’S METHOD 

1 Choose initial guess 0x , convergence tolerance tol  

2 for k = 0, 1, 2,...  do  

3  Solve ( )k kk f xH s = −∇  for ks  

4  if ( )
2k tolf x ≤∇  then converged 

5  Choose kη  that minimizes ( ) ( )k k k kf x sφ η η= +  

6  1k k k kx x sη+ ← +  

7 end for 
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Newton’s Method

• Convex Problem

For convex functions, these approximations 
are always convex and so their stationary 
points are minima.

• Non-Convex Problem

For non-convex functions, quadratic 
approximations can be concave or convex
depending on where they are constructed, 
leading the algorithm to possibly converge to a 
maximum. 

12
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1. Intro/Prob 
Statement

• Searches for the stationary points of quadratic approximation of the function, 

𝛻𝛻 𝑥𝑥𝑘𝑘 + 𝑠𝑠𝑘𝑘 = 𝛻𝛻 𝑥𝑥𝑘𝑘 + 𝛻𝛻𝛻𝛻 𝑥𝑥𝑘𝑘 𝑇𝑇𝑠𝑠𝑘𝑘 +
1
2
𝑠𝑠𝑘𝑘𝛻𝛻2𝛻𝛻 𝑥𝑥𝑘𝑘 𝑠𝑠𝑘𝑘

• Problems with Newton’s method:
– Only converges when sufficiently close to a minimum, the Hessian is dense in general and so very 

expensive to compute its inverse if n is large, can be impractical to derive the Hessian analytically
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Quasi-Newton’s Method
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• Quasi-Newton’s method do not require the Hessian matrix. 
• Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

– Computes the approximation of Hessian iteratively 
– Improves the Hessian approximation using gradient evaluations

• Search direction: 𝐵𝐵𝑘𝑘𝑠𝑠𝑘𝑘 = − ∇𝛻𝛻(𝑥𝑥𝑘𝑘), 𝐵𝐵𝑘𝑘 ≈ 𝐻𝐻𝑘𝑘
• Quasi-Newton (secant) condition: 

– Let �̃�𝑠𝑘𝑘 ≡ 𝑥𝑥𝑘𝑘+1 − 𝑥𝑥𝑘𝑘 = 𝜂𝜂𝑘𝑘𝑠𝑠𝑘𝑘, 𝑦𝑦𝑘𝑘 ≡ ∇𝛻𝛻 𝑥𝑥𝑘𝑘+1 − ∇𝛻𝛻(𝑥𝑥𝑘𝑘)
– Note:  ∇𝛻𝛻 𝑥𝑥𝑘𝑘+1 = ∇𝛻𝛻 𝑥𝑥𝑘𝑘 + �̃�𝑠𝑘𝑘 = ∇𝛻𝛻 𝑥𝑥𝑘𝑘 + ∇2𝛻𝛻 𝑥𝑥𝑘𝑘 �̃�𝑠𝑘𝑘
– Then, ∇2𝛻𝛻 𝑥𝑥𝑘𝑘 �̃�𝑠𝑘𝑘 ≈ ∇𝛻𝛻 𝑥𝑥𝑘𝑘+1 − ∇𝛻𝛻 𝑥𝑥𝑘𝑘 = 𝑦𝑦𝑘𝑘
– Thus, 𝐵𝐵𝑘𝑘+1 must satisfy 𝐵𝐵𝑘𝑘+1�̃�𝑠𝑘𝑘 = 𝑦𝑦𝑘𝑘

• Symmetric Rank-Two Update Formula (from Lecture note)
– 𝐵𝐵𝑘𝑘+1 = 𝐵𝐵𝑘𝑘 −

1
�̃�𝑠𝑘𝑘
𝑇𝑇𝐵𝐵𝑘𝑘�̃�𝑠𝑘𝑘

𝐵𝐵𝑘𝑘�̃�𝑠𝑘𝑘�̃�𝑠𝑘𝑘𝐵𝐵𝑘𝑘𝑇𝑇 + 1
𝑦𝑦𝑘𝑘
𝑇𝑇�̃�𝑠𝑘𝑘

𝑦𝑦𝑘𝑘𝑦𝑦𝑘𝑘𝑇𝑇

• Inverse Hessian Approach (from Lecture note)
– Motivation: 𝑠𝑠𝑘𝑘 = −𝐵𝐵𝑘𝑘−1∇𝛻𝛻 𝑥𝑥𝑘𝑘 = −�𝐻𝐻𝑘𝑘∇𝛻𝛻 𝑥𝑥𝑘𝑘

– �𝐻𝐻𝑘𝑘+1 = �𝐻𝐻𝑘𝑘 + 1
𝑦𝑦𝑘𝑘
𝑇𝑇�̃�𝑠𝑘𝑘

�̃�𝑠𝑘𝑘 �̃�𝑠𝑘𝑘𝑇𝑇 −
1

𝑦𝑦𝑘𝑘
𝑇𝑇 �𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘

�𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘 �𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘
𝑇𝑇 + 𝑦𝑦𝑘𝑘 �𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇 where 𝑣𝑣𝑘𝑘 = �̃�𝑠𝑘𝑘

𝑦𝑦𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

− 𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘
𝑇𝑇 �𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘
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Quasi-Newton’s Method
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• Inverse Hessian Approach (from Lecture note)
– Motivation: 𝑠𝑠𝑘𝑘 = −𝐵𝐵𝑘𝑘−1∇𝛻𝛻 𝑥𝑥𝑘𝑘 = −�𝐻𝐻𝑘𝑘∇𝛻𝛻 𝑥𝑥𝑘𝑘

– �𝐻𝐻𝑘𝑘+1 = �𝐻𝐻𝑘𝑘 + 1
𝑦𝑦𝑘𝑘
𝑇𝑇�̃�𝑠𝑘𝑘

�̃�𝑠𝑘𝑘 �̃�𝑠𝑘𝑘𝑇𝑇 −
1

𝑦𝑦𝑘𝑘
𝑇𝑇 �𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘

�𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘 �𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘
𝑇𝑇 + 𝑦𝑦𝑘𝑘 �𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘 𝑣𝑣𝑘𝑘𝑣𝑣𝑘𝑘𝑇𝑇 where 𝑣𝑣𝑘𝑘 = �̃�𝑠𝑘𝑘

𝑦𝑦𝑘𝑘
𝑇𝑇𝑦𝑦𝑘𝑘

− 𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘
𝑦𝑦𝑘𝑘
𝑇𝑇 �𝐻𝐻𝑘𝑘𝑦𝑦𝑘𝑘

• Backtracking Line Search
1. “Sufficient decrease condition”
– 𝛻𝛻 𝑥𝑥𝑘𝑘+1 ≤ 𝛻𝛻 𝑥𝑥𝑘𝑘 + 𝑐𝑐1𝜂𝜂∇𝛻𝛻 𝑥𝑥𝑘𝑘 𝑇𝑇𝑠𝑠𝑘𝑘
– 𝑐𝑐1𝜖𝜖 (0,1)
2. “Curvature condition”
– ∇𝛻𝛻 𝑥𝑥𝑘𝑘+1 𝑇𝑇𝑠𝑠𝑘𝑘 ≥ 𝑐𝑐2𝜂𝜂∇𝛻𝛻 𝑥𝑥𝑘𝑘 𝑇𝑇𝑠𝑠𝑘𝑘
– 𝑐𝑐2𝜖𝜖 (𝑐𝑐1, 1)

BFGS ALGORITHM 

1 Choose initial guess 0x , convergence tolerance tol , 0H I=  

2 while ( )
2k tolf x ≥∇  do 

3   ( )k kk f xs H= − ∇   

4  Choose kη  that minimizes ( ) ( )k k k kf x sφ η η= +  by BTLS 

5  1k k k kx x sη+ ← +  or 1 ( )k k k k kx x H f xη+ ← − ∇  

6  1k k ks x x+= −  

7  ( ) ( )1k kky f x f x+= ∇ −∇  

8  
1

k T
k ky s

ρ =   

9  ( ) ( )1
T T T

k k k k k k k k k k kI s y I y s s sH Hρ ρ ρ+ ← − − +   

   

10 end while 
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6. Conclusion
1. Intro/Prob 
Statement

• Unconstrained Optimization Problem
• Steepest Gradient Descent: 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜂𝜂 𝐼𝐼 ∇𝛻𝛻(𝑥𝑥𝑘𝑘)
• Newton’s Method : 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜂𝜂 ∇2𝛻𝛻(𝑥𝑥𝑘𝑘) −1 ∇𝛻𝛻(𝑥𝑥𝑘𝑘)
• Quasi-Newton’s method: 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝜂𝜂 �𝐻𝐻𝑘𝑘 ∇𝛻𝛻(𝑥𝑥𝑘𝑘)
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1. Intro/Prob 
Statement

• Himmelblau Function 𝛻𝛻 𝑥𝑥, 𝑦𝑦 = 𝑥𝑥2 + 𝑦𝑦 − 11 2 + 𝑥𝑥 + 𝑦𝑦2 − 7 2

• Continuous, non-convex, multimodal function
• Used to test optimization algorithms 
• It has one local maximum at 𝑥𝑥 = −0.270845 and 𝑦𝑦 = −0.923039 where 𝛻𝛻 𝑥𝑥,𝑦𝑦 =181.617

• It has four identical local minima: 
– 𝛻𝛻 3, 2 = 𝛻𝛻 −2.805188, 3.131312 = 𝛻𝛻 −3.779310,−3.283186 = 𝛻𝛻 3.584428,−1.848126 = 0
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Statement

• Implemented Steepest Descent, (Damped) Newton’s Method, and BFGS algorithm
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Optimization

4. Inequality Constrained 
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5. Comparison 
with MATLAB

6. Conclusion
1. Intro/Prob 
Statement

• Implemented Steepest Descent, (Damped) Newton’s Method, and BFGS algorithm

(−0.270845,−0.923039)
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1. Intro/Prob 
Statement

min   ( )  . .  ( ) 0

, : ,  :

x

pn n

f x s t h x

x R f R R h R R

=

∈ → →
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Constrained Newton’s Method

• Equality Constrained Problem 
 min

𝑥𝑥𝜖𝜖𝑅𝑅𝑚𝑚
𝛻𝛻(𝑥𝑥) subject to ℎ 𝑥𝑥 = 0

 Lagrangian: 𝐿𝐿 𝑥𝑥, 𝜆𝜆 = 𝛻𝛻 𝑥𝑥 + 𝜆𝜆𝑇𝑇ℎ(𝑥𝑥)
 Lagrange multiplier: 𝜆𝜆𝜖𝜖𝑅𝑅𝑝𝑝

• Optimality Conditions
 At optimal point, ∇𝐿𝐿 𝑥𝑥∗, 𝜆𝜆∗ = 0

 ∇𝐿𝐿 𝑥𝑥∗, 𝜆𝜆∗ = ∇𝑥𝑥𝐿𝐿 𝑥𝑥∗, 𝜆𝜆∗
∇𝜆𝜆𝐿𝐿 𝑥𝑥∗, 𝜆𝜆∗ = ∇𝑥𝑥𝛻𝛻 𝑥𝑥∗ + ∇𝑥𝑥ℎ(𝑥𝑥∗)𝜆𝜆∗

ℎ(𝑥𝑥∗) = 0
0

• Two ways to derive the Newton step ∆𝑥𝑥𝑛𝑛𝑛𝑛
1. Solution to the approximate quadratic problem 
2. Solution to the linearized optimality conditions

2. Unconstrained 
Optimization

3. Equality Constrained 
Optimization

4. Inequality Constrained 
Optimization

5. Comparison 
with MATLAB

6. Conclusion
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1. Intro/Prob 
Statement

n equations
p equations
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1. Newton step via Second-order Approximation
• The Newton step ∆𝑥𝑥𝑛𝑛𝑛𝑛 solves the linearized (convex quadratic) problem 

 min
∆𝑥𝑥𝜖𝜖𝑅𝑅𝑚𝑚

𝛻𝛻 𝑥𝑥 + ∆𝑥𝑥 = 𝛻𝛻 𝑥𝑥 + ∇𝛻𝛻 𝑥𝑥 𝑇𝑇∆𝑥𝑥 + 1
2
∆𝑥𝑥𝑇𝑇∇2𝛻𝛻 𝑥𝑥 ∆𝑥𝑥

s.t. �ℎ 𝑥𝑥 + ∆𝑥𝑥 = ℎ 𝑥𝑥 + 𝐷𝐷ℎ(𝑥𝑥) ∆𝑥𝑥 = 0

• The Lagrangian for this problem is 
 𝐿𝐿 ∆𝑥𝑥, 𝜆𝜆 = 𝛻𝛻 𝑥𝑥 + ∇𝛻𝛻 𝑥𝑥 𝑇𝑇∆𝑥𝑥 + 1

2
∆𝑥𝑥𝑇𝑇∇2𝛻𝛻 𝑥𝑥 ∆𝑥𝑥 + 𝜆𝜆𝑇𝑇 𝐷𝐷ℎ(𝑥𝑥) ∆𝑥𝑥

• Optimality Conditions: ∇𝐿𝐿 𝑥𝑥, 𝜆𝜆 = 0

 ∇𝐿𝐿 ∆𝑥𝑥, 𝜆𝜆 = ∇∆𝑥𝑥𝐿𝐿 ∆𝑥𝑥, 𝜆𝜆
∇𝜆𝜆𝐿𝐿 ∆𝑥𝑥, 𝜆𝜆 = ∇𝛻𝛻 𝑥𝑥 + ∇2𝛻𝛻 𝑥𝑥 ∆𝑥𝑥 + 𝐷𝐷ℎ 𝑥𝑥 𝑇𝑇𝜆𝜆

𝐷𝐷ℎ(𝑥𝑥) ∆𝑥𝑥 = 0
0

 Equivalently, ∇
2𝛻𝛻 𝑥𝑥 𝐷𝐷ℎ 𝑥𝑥 𝑇𝑇

𝐷𝐷ℎ(𝑥𝑥) 0
∆𝑥𝑥
𝜆𝜆 = −∇𝛻𝛻 𝑥𝑥

0
… “KKT System”

 Suppose, we have linear equality constraints, i.e. ℎ 𝑥𝑥 = 𝐴𝐴𝑥𝑥 − 𝑏𝑏 =
𝑎𝑎1𝑇𝑇𝑥𝑥 − 𝑏𝑏1

⋮
𝑎𝑎𝑝𝑝𝑇𝑇𝑥𝑥 − 𝑏𝑏𝑝𝑝

= 0. Then, 

𝐷𝐷ℎ 𝑥𝑥 =
𝐷𝐷(𝑎𝑎1𝑇𝑇𝑥𝑥 − 𝑏𝑏1)

⋮
𝐷𝐷(𝑎𝑎𝑝𝑝𝑇𝑇𝑥𝑥 − 𝑏𝑏𝑝𝑝)

=
𝑎𝑎1𝑇𝑇
⋮
𝑎𝑎1𝑇𝑇

= 𝐴𝐴 ⇒ ∇2𝛻𝛻 𝑥𝑥 𝐴𝐴𝑇𝑇
𝐴𝐴 0

∆𝑥𝑥
𝜆𝜆 = −∇𝛻𝛻 𝑥𝑥

0
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1. Intro/Prob 
Statement

𝐷𝐷ℎ 𝑥𝑥 =
𝐷𝐷ℎ1 𝑥𝑥

⋮
𝐷𝐷ℎ𝑝𝑝 𝑥𝑥

=
∇ℎ1 𝑥𝑥 𝑇𝑇

⋮
∇ℎ𝑝𝑝 𝑥𝑥 𝑇𝑇

= ∇ℎ 𝑥𝑥 𝑇𝑇

(𝑝𝑝 × 𝑛𝑛)

𝐷𝐷(𝑎𝑎𝑖𝑖𝑇𝑇𝑥𝑥 − 𝑏𝑏𝑖𝑖) = 𝜕𝜕(𝑎𝑎𝑚𝑚
𝑇𝑇𝑥𝑥)

𝜕𝜕𝑥𝑥1
⋯ 𝜕𝜕(𝑎𝑎𝑚𝑚

𝑇𝑇𝑥𝑥)
𝜕𝜕𝑥𝑥𝑚𝑚

= 𝑎𝑎𝑖𝑖𝑇𝑇

𝑆𝑆

∇𝑥𝑥 𝐴𝐴𝑥𝑥 = 𝐷𝐷 𝐴𝐴𝑥𝑥 𝑇𝑇 = 𝐴𝐴𝑇𝑇
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2. Newton step via Linearized Optimality Conditions

• Optimality conditions (replace 𝑥𝑥∗ ← 𝑥𝑥 + ∆𝑥𝑥𝑛𝑛𝑛𝑛)

 ∇𝐿𝐿 𝑥𝑥∗,𝜆𝜆∗ = ∇𝑥𝑥𝐿𝐿 𝑥𝑥∗,𝜆𝜆∗
∇𝜆𝜆𝐿𝐿 𝑥𝑥∗, 𝜆𝜆∗ = ∇𝑥𝑥𝛻𝛻 𝑥𝑥∗ + ∇𝑥𝑥ℎ(𝑥𝑥∗)𝜆𝜆∗

ℎ(𝑥𝑥∗) = 0
0 becomes

∇𝑥𝑥𝛻𝛻 𝑥𝑥 + ∆𝑥𝑥𝑛𝑛𝑛𝑛 + ∇𝑥𝑥ℎ(𝑥𝑥 + ∆𝑥𝑥𝑛𝑛𝑛𝑛)𝜆𝜆
ℎ(𝑥𝑥 + ∆𝑥𝑥𝑛𝑛𝑛𝑛)

= ∇𝑥𝑥𝛻𝛻 𝑥𝑥 + ∇𝑥𝑥2𝛻𝛻 𝑥𝑥 ∆𝑥𝑥𝑛𝑛𝑛𝑛 + ∇𝑥𝑥ℎ(𝑥𝑥)𝜆𝜆 + ∇𝑥𝑥2ℎ 𝑥𝑥 ∆𝑥𝑥𝑛𝑛𝑛𝑛𝜆𝜆
ℎ 𝑥𝑥 + ∇𝑥𝑥ℎ 𝑥𝑥 𝑇𝑇𝜆𝜆

= ∇𝑥𝑥𝛻𝛻 𝑥𝑥 + ∇𝑥𝑥2𝛻𝛻 𝑥𝑥 ∆𝑥𝑥𝑛𝑛𝑛𝑛 + 𝐷𝐷ℎ 𝑥𝑥 𝑇𝑇𝜆𝜆
𝐷𝐷ℎ(𝑥𝑥)𝜆𝜆 = 0

0 since ∇𝑥𝑥ℎ 𝑥𝑥 = 𝐷𝐷ℎ 𝑥𝑥 𝑇𝑇

 Thus, we have

∇2𝛻𝛻 𝑥𝑥 𝐷𝐷ℎ 𝑥𝑥 𝑇𝑇

𝐷𝐷ℎ(𝑥𝑥) 0
∆𝑥𝑥𝑛𝑛𝑛𝑛
𝜆𝜆 = −∇𝛻𝛻 𝑥𝑥

0
… “KKT System”
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1. Intro/Prob 
Statement

∇𝑥𝑥ℎ 𝑥𝑥 + ∆𝑥𝑥𝑛𝑛𝑛𝑛 = 𝐷𝐷ℎ 𝑥𝑥 + ∆𝑥𝑥𝑛𝑛𝑛𝑛 𝑇𝑇 =
𝐷𝐷ℎ1 𝑥𝑥 + ∆𝑥𝑥𝑛𝑛𝑛𝑛

⋮
𝐷𝐷ℎ𝑝𝑝 𝑥𝑥 + ∆𝑥𝑥𝑛𝑛𝑛𝑛

𝑇𝑇

=
𝐷𝐷ℎ1 𝑥𝑥 + 𝐷𝐷∇ℎ1 𝑥𝑥 𝑇𝑇∆𝑥𝑥𝑛𝑛𝑛𝑛

⋮
𝐷𝐷ℎ𝑝𝑝 𝑥𝑥 + 𝐷𝐷∇ℎ𝑝𝑝 𝑥𝑥 𝑇𝑇∆𝑥𝑥𝑛𝑛𝑛𝑛

𝑇𝑇

=
𝐷𝐷ℎ1 𝑥𝑥

⋮
𝐷𝐷ℎ𝑝𝑝 𝑥𝑥

𝑇𝑇

+ 𝐷𝐷∇ℎ 𝑥𝑥 𝑇𝑇∆𝑥𝑥𝑛𝑛𝑛𝑛 = ∇ℎ 𝑥𝑥 + ∇2ℎ(𝑥𝑥)∆𝑥𝑥𝑛𝑛𝑛𝑛



SAI Strategic
Aerospace
Initiative

Infeasible start Newton’s Method

• The previous interpretation can be extended to Newton step at infeasible points. 
• Assume linear equality constraints, i.e. ℎ 𝑥𝑥 = 𝐴𝐴𝑥𝑥 − 𝑏𝑏 = 0.
• Let 𝑥𝑥′ denote the current point, not necessarily feasible, i.e. 𝐴𝐴𝑥𝑥′ − 𝑏𝑏 ≠ 0, 𝑥𝑥′ ∈ 𝑑𝑑𝑑𝑑𝑚𝑚 𝛻𝛻.
• Optimality conditions (replace 𝑥𝑥∗ ← 𝑥𝑥′ + ∆𝑥𝑥𝑛𝑛𝑛𝑛)


∇𝑥𝑥𝛻𝛻 𝑥𝑥′ + ∇𝑥𝑥2𝛻𝛻 𝑥𝑥′ ∆𝑥𝑥𝑛𝑛𝑛𝑛 + 𝐷𝐷ℎ 𝑥𝑥′ 𝑇𝑇𝜆𝜆

ℎ 𝑥𝑥 + 𝐷𝐷ℎ(𝑥𝑥′)𝜆𝜆 = 0
0 ⇒ ∇2𝛻𝛻 𝑥𝑥′ 𝐴𝐴𝑇𝑇

𝐴𝐴 0
∆𝑥𝑥𝑛𝑛𝑛𝑛
𝜆𝜆 = − ∇𝛻𝛻 𝑥𝑥′

𝐴𝐴𝑥𝑥′ − 𝑏𝑏

• Introduce residual function 𝑟𝑟 𝑦𝑦 = 𝑟𝑟 𝑥𝑥, 𝜆𝜆 = ∇𝛻𝛻 𝑥𝑥 + 𝐴𝐴𝑇𝑇𝜆𝜆
𝐴𝐴𝑥𝑥 − 𝑏𝑏

• Linearizing 𝑟𝑟 𝑦𝑦 = 0 gives 𝑟𝑟 𝑦𝑦 + ∆𝑦𝑦 ≈ 𝑟𝑟 𝑦𝑦 + 𝐷𝐷𝑟𝑟 𝑦𝑦 ∆𝑦𝑦 = 0
⇒ ∇𝛻𝛻 𝑥𝑥 + 𝐴𝐴𝑇𝑇𝜆𝜆

𝐴𝐴𝑥𝑥 − 𝑏𝑏
+ 𝐷𝐷𝑟𝑟 𝑦𝑦 ∆𝑥𝑥

∆𝜆𝜆 = ∇𝛻𝛻 𝑥𝑥 + 𝐴𝐴𝑇𝑇𝜆𝜆
𝐴𝐴𝑥𝑥 − 𝑏𝑏

+ ∇2𝛻𝛻 𝑥𝑥 𝐴𝐴𝑇𝑇
𝐴𝐴 0

∆𝑥𝑥
∆𝜆𝜆 = 0

⇒ ∇2𝛻𝛻 𝑥𝑥 𝐴𝐴𝑇𝑇
𝐴𝐴 0

∆𝑥𝑥𝑛𝑛𝑛𝑛
∆𝜆𝜆𝑛𝑛𝑛𝑛

= − ∇𝛻𝛻 𝑥𝑥 + 𝐴𝐴𝑇𝑇𝜆𝜆
𝐴𝐴𝑥𝑥 − 𝑏𝑏
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1. Intro/Prob 
Statement

𝑛𝑛 + 𝑝𝑝 × 1

𝐷𝐷𝑟𝑟 𝑦𝑦 =
𝐷𝐷𝑦𝑦(∇𝛻𝛻 𝑥𝑥 + 𝐴𝐴𝑇𝑇𝜆𝜆)
𝐷𝐷𝑦𝑦(𝐴𝐴𝑥𝑥 − 𝑏𝑏) = 𝐷𝐷𝑥𝑥(∇𝛻𝛻 𝑥𝑥 + 𝐴𝐴𝑇𝑇𝜆𝜆) 𝐷𝐷𝜆𝜆(∇𝛻𝛻 𝑥𝑥 + 𝐴𝐴𝑇𝑇𝜆𝜆)

𝐷𝐷𝑥𝑥(𝐴𝐴𝑥𝑥 − 𝑏𝑏) 𝐷𝐷𝜆𝜆(𝐴𝐴𝑥𝑥 − 𝑏𝑏) = ∇2𝛻𝛻 𝑥𝑥 𝐴𝐴𝑇𝑇
𝐴𝐴 0

∆𝑥𝑥𝑛𝑛𝑛𝑛: Primal Newton step
∆𝜆𝜆𝑛𝑛𝑛𝑛: Dual Newton step

Intuition: 𝑟𝑟 𝑦𝑦∗ ≈ 0
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Infeasible start Newton’s Method

• Primal-dual interpretation
 Update both primal 𝑥𝑥 and dual 𝜆𝜆 (or 𝜈𝜈) 
 Satisfy the optimality conditions approximately 𝑟𝑟 𝑦𝑦 = 0

• The Newton step Δ𝑥𝑥𝑛𝑛𝑛𝑛, Δ𝜈𝜈𝑛𝑛𝑛𝑛 is not a descent direction unless 𝐴𝐴𝑥𝑥 − 𝑏𝑏 = 0


𝑑𝑑
𝑑𝑑𝑛𝑛
𝛻𝛻 𝑥𝑥 + 𝑡𝑡Δ𝑥𝑥𝑛𝑛𝑛𝑛 |𝑛𝑛=0 = 𝐷𝐷𝛻𝛻 𝑥𝑥 Δ𝑥𝑥𝑛𝑛𝑛𝑛 = ∇𝛻𝛻 𝑥𝑥 𝑇𝑇Δ𝑥𝑥𝑛𝑛𝑛𝑛 = −Δ𝑥𝑥𝑛𝑛𝑛𝑛𝑇𝑇 ∇2𝛻𝛻 𝑥𝑥 Δ𝑥𝑥𝑛𝑛𝑛𝑛 + 𝐴𝐴𝑇𝑇𝑤𝑤 , 𝒘𝒘 = 𝝂𝝂 + 𝜟𝜟𝝂𝝂𝒏𝒏𝒏𝒏

= −Δ𝑥𝑥𝑛𝑛𝑛𝑛𝑇𝑇 ∇2𝛻𝛻 𝑥𝑥 Δ𝑥𝑥𝑛𝑛𝑛𝑛 + 𝐴𝐴𝑥𝑥 − 𝑏𝑏 𝑇𝑇𝑤𝑤 ≮ 0 𝑖𝑖𝛻𝛻 𝐴𝐴𝑥𝑥 − 𝑏𝑏 ≠ 0
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1. Intro/Prob 
Statement

INFEASIBLE START NEWTON METHOD 

1 Choose initial guess 0x , convergence tolerance tol , 0H I=  

2 while ( )
2

,r x tolν ≥  do 

3  ; 0 ,  PT T T
kS A A SP LDLH = = 
   

4  [ ] 1 1; ( , )T T
nt ntx PL D L P r xν ν− − −∆ ∆ = −  

5  Choose t  that minimizes ( ) ( )
2

,k nt ntr x t x tφ η ν ν= + ∆ + ∆  by BTLS 

6   : 1t =  

7   While ( ) ( ) ( )
2 2

, 1 ,nt ntr x t x t t r xν ν α ν+ ∆ + ∆ > −  :t tβ=  

8  1 1,  k k nt k k ntx x t x tν ν ν+ +← + ∆ ← + ∆  

9  Update kH  via BFGS  

10 end while 

 

• But, the residual decreases in 
norm at each iteration because:

𝑑𝑑
𝑑𝑑𝑛𝑛

𝑟𝑟 𝑦𝑦 + 𝑡𝑡Δ𝑦𝑦 2|𝑛𝑛=0 = − 𝑟𝑟 𝑦𝑦 2
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Test on Himmelblau Function

• One equality constraint, 𝑥𝑥 + 𝑦𝑦 = 1
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Optimization

3. Equality Constrained 
Optimization
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Optimization
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with MATLAB
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1. Intro/Prob 
Statement

⋮

⋮
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1. Intro/Prob 
Statement

min   ( )  . .  ( ) 0, ( ) 0

, : ,  : ,  g:

x

pn n m

f x s t h x g x

x R f R R h R R R R

= ≤

∈ → → →
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Barrier Method
• The barrier method solves a sequence of equality constrained problems where the 

inequality constraints are replaced with a so-called barrier function that is added to 
objective function. 

• min
𝑥𝑥
𝛻𝛻 𝑥𝑥 subject to   ℎ 𝑥𝑥 = 0, 𝑔𝑔 𝑥𝑥 ≤ 0

• min
𝑥𝑥
𝛻𝛻 𝑥𝑥 + ∑𝑖𝑖=1𝑚𝑚 𝐼𝐼−(𝑔𝑔(𝑥𝑥)) subject to   ℎ 𝑥𝑥 = 0

where 𝐼𝐼− 𝑢𝑢 = �0 𝑖𝑖𝛻𝛻 𝑢𝑢 ≤ 0
∞ 𝑖𝑖𝛻𝛻 𝑢𝑢 > 0

• But, now we have a non-differentiable objective function!
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Optimization
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1. Intro/Prob 
Statement

Original Problem (P) 

Reformulated Problem 
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Barrier Method

• We approximate the previous representation by adding the log barrier function.

• min
𝑥𝑥
𝛻𝛻 𝑥𝑥 − 1

𝜏𝜏
∑𝑖𝑖=1𝑚𝑚 𝑙𝑙𝑑𝑑𝑔𝑔 (−𝑔𝑔𝑖𝑖(𝑥𝑥)) subject to   ℎ 𝑥𝑥 = 0

where as 𝑔𝑔𝑖𝑖− 𝑥𝑥 → 0,−𝑙𝑙𝑑𝑑𝑔𝑔 −𝑔𝑔𝑖𝑖 𝑥𝑥 → ∞

• For 𝜏𝜏 > 0, 1
𝜏𝜏
𝑙𝑙𝑑𝑑𝑔𝑔 −𝑔𝑔 𝑥𝑥 is a smooth approximation of 𝐼𝐼− 𝑢𝑢

• Approximation improves as 𝜏𝜏 → ∞. But for any value of 𝜏𝜏, the log barrier approaches ∞
if any 𝑔𝑔𝑖𝑖(𝑥𝑥) → 0. 

• Numerically unstable as 𝜏𝜏 → ∞. 
• For sufficiently large 𝜏𝜏 > 0, the solution to P*, denoted as 𝑥𝑥∗(𝑡𝑡), can be obtained by 

the Newton method. 
• Key idea: Start with some small value of 𝜏𝜏, solve P* and use that 𝑥𝑥∗ 𝑡𝑡 as a hot-start 

for the next iteration, for which 𝜏𝜏 is increased. “Centering step”
 Repeat until 𝑚𝑚

𝑛𝑛
≤ 𝜀𝜀 where 𝜀𝜀 is a measure of “how close you want to get to inequality constraint.”
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• Let 𝜙𝜙 𝑥𝑥 = −∑𝑖𝑖=1𝑚𝑚 𝑙𝑙𝑑𝑑𝑔𝑔 (−𝑔𝑔𝑖𝑖(𝑥𝑥))
• Suppose we have linear equality and linear inequality constraints

 ℎ 𝑥𝑥 = 𝐴𝐴𝑥𝑥 − 𝑏𝑏 = 0, ℎ𝑖𝑖 𝑥𝑥 = 𝑎𝑎𝑖𝑖𝑇𝑇𝑥𝑥 − 𝑏𝑏𝑖𝑖 = 0
 𝑔𝑔 𝑥𝑥 = 𝐶𝐶𝑥𝑥 − 𝑑𝑑 ≤ 0, 𝑔𝑔𝑖𝑖 𝑥𝑥 = 𝑐𝑐𝑖𝑖𝑇𝑇𝑥𝑥 − 𝑑𝑑𝑖𝑖 ≤ 0

• Then, the log barrier functions becomes 
 𝜙𝜙 𝑥𝑥 = −∑𝑖𝑖=1𝑚𝑚 𝑙𝑙𝑑𝑑𝑔𝑔 (𝑑𝑑𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑇𝑇𝑥𝑥)

 ∇𝑥𝑥𝜙𝜙 𝑥𝑥 = 𝐶𝐶𝑇𝑇𝑑𝑑′ where 𝑑𝑑𝑖𝑖′ = 1
𝑑𝑑𝑚𝑚−𝑐𝑐𝑚𝑚

𝑇𝑇𝑥𝑥

 ∇𝑥𝑥2𝜙𝜙 𝑥𝑥 = 𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑎𝑎𝑔𝑔 𝑑𝑑′2 𝐶𝐶 with dom 𝜙𝜙 = 𝑥𝑥|𝑐𝑐𝑖𝑖𝑇𝑇𝑥𝑥 < 𝑑𝑑𝑖𝑖
• Also, centering step problem P* becomes 

min
𝑥𝑥

𝛻𝛻(𝑥𝑥) subject to  𝐴𝐴𝑥𝑥 = 𝑏𝑏 ⇒ min
𝑥𝑥

𝜏𝜏𝛻𝛻 𝑥𝑥 + 𝜙𝜙 𝑥𝑥 subject to  𝐴𝐴𝑥𝑥 = 𝑏𝑏
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• ∇𝛻𝛻(𝑥𝑥) = 𝜏𝜏∇𝛻𝛻 𝑥𝑥 + ∇𝜙𝜙 𝑥𝑥 = 𝜏𝜏∇𝛻𝛻 𝑥𝑥 + 𝐶𝐶𝑇𝑇𝑑𝑑′

• ∇2 𝛻𝛻(𝑥𝑥) = 𝜏𝜏𝐷𝐷 ∇𝛻𝛻 𝑥𝑥 + 𝐷𝐷 ∇𝜙𝜙 𝑥𝑥
= 𝜏𝜏∇2𝛻𝛻 𝑥𝑥 + ∇2𝜙𝜙 𝑥𝑥

= 𝜏𝜏∇2𝛻𝛻 𝑥𝑥 + 𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑎𝑎𝑔𝑔 𝑑𝑑′2 𝐶𝐶

• Gradient: ∇𝛻𝛻 𝑥𝑥 can be obtained by numerical differentiation
• Hessian: ∇2𝛻𝛻 𝑥𝑥 can be obtained by BFGS update 
• So, KKT system becomes 
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∇2𝛻𝛻 𝑥𝑥 𝐴𝐴𝑇𝑇
𝐴𝐴 0

∆𝑥𝑥𝑛𝑛𝑛𝑛
∆𝜆𝜆𝑛𝑛𝑛𝑛

= − ∇𝛻𝛻(𝑥𝑥) + 𝐴𝐴𝑇𝑇𝜆𝜆
𝐴𝐴𝑥𝑥 − 𝑏𝑏

⇒ 𝜏𝜏∇2𝛻𝛻 𝑥𝑥 + 𝐶𝐶𝑇𝑇𝑑𝑑𝑖𝑖𝑎𝑎𝑔𝑔 𝑑𝑑′2 𝐶𝐶 𝐴𝐴𝑇𝑇

𝐴𝐴 0
∆𝑥𝑥𝑛𝑛𝑛𝑛
∆𝜆𝜆𝑛𝑛𝑛𝑛

= − 𝜏𝜏∇𝛻𝛻 𝑥𝑥 + 𝐶𝐶𝑇𝑇𝑑𝑑′ + 𝐴𝐴𝑇𝑇𝜆𝜆
𝐴𝐴𝑥𝑥 − 𝑏𝑏

�̃�𝑆

min
𝑥𝑥
𝛻𝛻 𝑥𝑥 = 𝜏𝜏𝛻𝛻 𝑥𝑥 + 𝜙𝜙 𝑥𝑥

subject to 𝐴𝐴𝑥𝑥 = 𝑏𝑏

Centering Problem (P*) 

∆𝑥𝑥𝑛𝑛𝑛𝑛: Primal Newton step
∆𝜆𝜆𝑛𝑛𝑛𝑛: Dual Newton step
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• Barrier method requires an initial point that is strictly feasible for all inequality 
constraints.

BARRIER METHOD FOR LINEAR EQUALITY AND INEQUALITY CONSTRAINTS 

1 Choose strictly feasible x , convergence tolerance tol , 01,  µ τ τ> =  

2 while m tolτ ≥  do 

3  Initialize '2( )T
0H I C diag d Cτ= +  

4  while ( )
2

,r x tolν ≥  do 

5   ; 0 ,  PT T T
kS A A SP LDLH = = 

   

6   [ ] 1 1; ( , )T T
nt ntx PL D L P r xν ν− − −∆ ∆ = −  

7   Choose t  that minimizes ( ) ( )
2

,k nt ntr x t x tφ η ν ν= + ∆ + ∆  by BTLS 

8   1 1,  k k nt k k ntx x t x tν ν ν+ +← + ∆ ← + ∆  

9   ( ) '
1 1 1 1, ( ) ;T T

k k k kr x f x C d A Ax bν τ ν+ + + + ← ∇ + + −    

10   Update kH  via BFGS 

11  end while 

12  *( )x x t←  

13  τ µτ←   

14 end while 

 

“Centering step”
Compute 𝑥𝑥∗(𝑡𝑡) by 
minimizing 𝜏𝜏𝛻𝛻 𝑥𝑥 + 𝜙𝜙 𝑥𝑥
subject to 𝐴𝐴𝑥𝑥 = 𝑏𝑏
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• Example on inequality-constrained LP

• min
𝑥𝑥

𝜏𝜏𝑐𝑐𝑇𝑇𝑥𝑥 − ∑𝑖𝑖=1𝑚𝑚 log 𝑑𝑑𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑇𝑇𝑥𝑥 , 𝛻𝛻 𝑥𝑥 = 𝑐𝑐𝑇𝑇𝑥𝑥

• The barrier function corresponds to polyhedral constraint 𝐶𝐶𝑥𝑥 − 𝑑𝑑 ≤ 0
• The KKT system, or the optimality conditions ∇𝑥𝑥𝐿𝐿 𝑥𝑥, 𝜆𝜆 = 0 ∵ 𝐴𝐴 = 0

∇𝑥𝑥(𝜏𝜏𝑐𝑐𝑇𝑇𝑥𝑥) + ∇𝑥𝑥 𝜙𝜙 𝑥𝑥 = 0 ⇒ 𝜏𝜏𝑐𝑐 + 𝐶𝐶𝑇𝑇𝑑𝑑′ = 0

• Geometric Interpretation: gradient ∇𝜙𝜙 𝑥𝑥∗(𝑡𝑡) = −𝜏𝜏𝑐𝑐,
 must be parallel to −𝑐𝑐
 Hyperplane 𝑥𝑥| 𝑐𝑐𝑇𝑇𝑥𝑥 = 𝑐𝑐𝑇𝑇𝑥𝑥∗(𝑡𝑡) lies tangent 
to contour of 𝜙𝜙 at 𝑥𝑥∗(𝑡𝑡)

Contour of 𝜙𝜙 at 𝑥𝑥∗(10)

∇𝜙𝜙 𝑥𝑥∗(10)
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https://en.wikipedia.org/wiki/Interior-point_method
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Test on Himmelblau Function

• One equality constraint: 𝑥𝑥 + 𝑦𝑦 = 1
• One inequality constraint: 𝑥𝑥 − 𝑦𝑦 ≤ −3
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Why Barrier Method?

• Strengths
 Polynomial complexity in the worst case LP

• Combinatorial complexity for Simplex method

 Viable linear algebra operation
• IPM does only solving linear system, which is straightforward 
• Suitable for large, sparse problems

 Robust to “scaling” of problem
• Can handle large-scale problems

• Weaknesses
 Each centering step is an expensive operation 
 Converges to a local minimum if problem is not convex

• Interior-point methods for nonconvex nonlinear programming have been developed by 
Benson, Shanno, and Vanderbei in 2000. 

• Otherwise, use global optimizers such as CEALM
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Barrier Method MATLAB Code Implementation 

• Solving by Barrier Method
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• Solving by Barrier Method
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BARRIER METHOD FOR LINEAR EQUALITY AND INEQUALITY CONSTRAINTS 

1 Choose strictly feasible x , convergence tolerance tol , 01,  µ τ τ> =  

2 while m tolτ ≥  do 

3  Initialize '2( )T
0H I C diag d Cτ= +  

4  while ( )
2

,r x tolν ≥  do 

5   ; 0 ,  PT T T
kS A A SP LDLH = = 

   

6   [ ] 1 1; ( , )T T
nt ntx PL D L P r xν ν− − −∆ ∆ = −  

7   Choose t  that minimizes ( ) ( )
2

,k nt ntr x t x tφ η ν ν= + ∆ + ∆  by BTLS 

8   1 1,  k k nt k k ntx x t x tν ν ν+ +← + ∆ ← + ∆  

9   ( ) '
1 1 1 1, ( ) ;T T

k k k kr x f x C d A Ax bν τ ν+ + + + ← ∇ + + −    

10   Update kH  via BFGS 

11  end while 

12  *( )x x t←  

13  τ µτ←   

14 end while 
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Comparison with MATLAB’s fmincon

• Without waypoint constraints: Objective function = 719.2805 
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Comparison with MATLAB’s fmincon

• With waypoint constraints: Objective function = 2612.058 𝑧𝑧 2 = 150, 𝑧𝑧 5 = 50
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Barrier Method Results

• Residual Plot (without waypoints, with waypoints)
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Barrier Method Results

• Norm of Equality Constraints Plot (without waypoints, with waypoints)
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Barrier Method Results

• Objective Function Plot (without waypoints, with waypoints)
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Conclusion

• Implemented MATLAB Code for parameter optimization algorithms
 Unconstrained Problem

• Steepest Descent 
• Newton Method
• Quasi-Newton Method (BFGS)

 Equality Constrained Problem
• Constrained Newton Method (KKT)
• Infeasible start Newton Method

 Inequality Constrained Problem
• Barrier Method 
• Phase I Optimization Problem 

• Solved optimal guidance problem using MATLAB’s fmincon and Barrier 
method
 Additional waypoint constraints at two points
 Comparison of Results 
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Reflection

• Had a chance to manually code various optimization algorithms 
 Great experience to understand how the algorithm works 

• Gained skills to code algorithms independently 
 Should be prepared if such a need arises, possibly in near future 
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Convex Optimization by S. Boyd pg. 579
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Changing Final Time Constraints

• Tried with a problem with 𝑣𝑣 𝑡𝑡𝑓𝑓 = 5, objective function value = 715.2305
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Saturated Control Input

• For control input, set −15 ≤ 𝑢𝑢 𝑡𝑡 ≤ 15
• Very difficult to converge to the optimal solution 

 Current plain backtracking line search gives step size of order 10−7

 After relaxing convergence tolerance, managed to obtain solution for N=50
 Difficulty increases with number of collocation nodes

• Different strategy for line search algorithm is required 
 Many variants of backtracking line search have been studied

• Wolfe conditions (suitable for both quasi-newton and conjugate gradient)
• Goldstein conditions (not suitable for quasi-newton)
• ….

• Instead of Barrier method, Primal-dual method is another option.
 Directly solves the perturbed KKT system 
 Primal-dual generally has faster convergence than barrier
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Saturated Control Input

• For control input, set −15 ≤ 𝑢𝑢 𝑡𝑡 ≤ 15

56


	슬라이드 번호 1
	Contents
	Contents
	Homing Guidance Problem
	From Optimal Control problem to Parameter Optimization
	Three Direct Collocation Methods
	Optimization Problem using Hermite-Simpson Collocation 
	Addition of Waypoint Constraints
	Contents
	Steepest Descent 
	Newton’s Method
	Newton’s Method
	Quasi-Newton’s Method
	Quasi-Newton’s Method
	Interim Summary
	Test on Benchmark Function
	Test on Benchmark Function
	Test on Benchmark Function
	Contents
	Constrained Newton’s Method
	1. Newton step via Second-order Approximation
	2. Newton step via Linearized Optimality Conditions
	Infeasible start Newton’s Method
	Infeasible start Newton’s Method
	Test on Himmelblau Function
	Contents
	Barrier Method
	Barrier Method
	Barrier Method
	Barrier Method
	Barrier Method
	Barrier Method on Inequality-constrained LP
	Barrier Method on Inequality-constrained LP
	Test on Himmelblau Function
	Why Barrier Method?
	Contents
	Barrier Method MATLAB Code Implementation 
	Barrier Method MATLAB Code Implementation 
	Barrier Method MATLAB Code Implementation 
	Barrier Method MATLAB Code Implementation 
	Comparison with MATLAB’s fmincon
	Comparison with MATLAB’s fmincon
	Barrier Method Results
	Barrier Method Results
	Barrier Method Results
	Contents
	Conclusion
	Reflection
	Thank you
	References
	Appendix
	Phase I Optimization Problem
	Convex Optimization by S. Boyd pg. 579
	Changing Final Time Constraints
	Saturated Control Input
	Saturated Control Input

